CYCLOCEPHALOGENIN AND CYCLOGALEGIGENIN

FROM Astragalus caucasicus

M. D. Alaniya,¹ T. I. Gigoshvili,¹ N. Sh. Kavtaradze,¹ Serge Lavoi,² Andre Pichette,² and V. D. Mshvildadze¹

We have continued research on cycloartane methylsteroids and their glycosides from plants of the genus *Astragalus* (Leguminosae) in Georgia. We isolated previously from the aerial part of *A. caucasicus* the cycloartane glycoside cycloascauloside A [1].

Slightly polar components of this plant were isolated from air-dried ground leaves (1 kg) collected in July 2003 near Lisi, Mtskhet Region, Republic of Georgia, by extracting three times with ethanol (80%, 10 L). The ethanol extracts were distilled to an aqueous residue that was worked up three times with $CHCl_3$ (3 × 200 mL). The $CHCl_3$ extract was evaporated. The residue was worked up with hot water and filtered. The aqueous solution was evaporated to dryness. The dry solid (11.2 g) was fractionated over a column of silica gel with elution by $CHCl_3:CH_3OH(10:1)$. The fraction containing triterpenoids (2.2 g) was rechromatographed over a column of silica gel using $CHCl_3:CH_3OH:H_2O$ (70:23.5:2) to afford cyclocephalogenin (1, 890 mg) and cyclogalegigenin (2, 500 mg).

Compound **1** was identified using PMR and 13 C NMR spectra (Table 1), which were interpreted using two-dimensional HSQC, HMBC, and DEPT spectra. Compound **2** was identified using spectral data and direct comparison with an authentic sample [1].

Compound **1** was previously determined in glycosides [2-5] and was found only once in the free state in roots of *A. zahlbruckneri* [6].

NMR spectra were obtained on a Bruker spectrometer at working frequency 400 MHz for ¹H and 100 MHz for ¹³C.

C atom	DEPT	$\delta_{\rm C}$	δ_{H}	C atom	DEPT	$\delta_{\rm C}$	$\delta_{\rm H}$
1	CH_2	32.2	1.58, 1.20	16	СН	73.9	4.62
2	CH_2	29.7	1.74, 1.59	17	CH	60.0	1.95
3	CH	78.0	3.24	18	CH ₃	20.3	1.45
4	С	41.3	-	19	CH ₂	31.3	0.39, 0.53
5	СН	53.1	1.34	20	С	79.2	-
6	СН	68.7	3.44	21	CH ₃	27.6	1.51
7	CH ₂	37.7	1.44, 1.34	22	CH ₂	25.7	2.63, 1.16
8	CH	47.2	1.80	23	CH_2	22.7	2.17, 1.72
9	С	20.5	-	24	CH	68.6	3.49
10	С	29.4	-	25	С	75.2	-
11	CH ₂	25.9	2.03, 1.16	26	CH ₃	27.4	1.28
12	CH_2	33.5	1.87, 1.68	27	CH ₃	27.3	1.20
13	C	46.4	-	28	CH ₃	19.8	0.93
14	С	45.6	-	29	CH ₃	27.7	1.23
15	CH_2	47.1	1.99, 1.47	30	CH ₃	14.8	0.95

TABLE 1. Chemical Shifts of C and H Atoms in 1 (CDCl₃/acetone-D₆)(C₅D₅N, δ , ppm, 0 = TMS)

1) I. G. Kutateladze Institute of Pharmaceutical Chemistry, Academy of Sciences of Georgia, Tbilisi, 0159, ul. Sarajishvili, 36, fax (99532) 25 00 26, e-mail: merialania@yahoo.com; 2) Universite du Quebec a Chicoutimi, Quebec, Canada G7H 2B1. Translated from Khimiya Prirodnykh Soedinenii, No. 3, p. 299, May-June, 2007. Original article submitted February 12, 2007.

UDC 547.918:547.926

REFERENCES

- 1. M. D. Alaniya, N. F. Chkadua, T. I. Gigoshvili, and E. P. Kemertelidze, *Khim. Prir. Soedin.*, 359 (2006).
- 2. E. Bedir, I. Calis, and O. Sticher, J. Nat. Prod., 61, 503 (1998).
- 3. M. A. Agzamova and M. I. Isaev, *Khim. Prir. Soedin.*, 348 (1999).
- 4. I. A. Sukhina, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 494 (1999).
- 5. I. A. Sukhina, R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, in: *Proceedings of 6th International Symposium on the Chemistry of Natural Compounds*, Ankara, Turkey, 28-29 June 2005, p. 28.
- 6. I. Calis, H. A. Gazar, S. Piacente, and C. Pizza, J. Nat. Prod., 64, 1179 (2001).